

Original article

Using Flame Photometer and Spectrophotometric Methods to Estimate the Minerals, Anti-oxidant Capacity, Total Phenol, and Total Carbohydrate of *Nicotiana Glauca* R.C. Graham. *Plantago Major* L. Sp. Pl and *Phillyrea Latifolia* L. Sp. Pl Plants

Khadijah Al-Awjali¹ , Enaam Mohammed² , Farag El-Mokasabi³ , Zuhir Ikraim⁴ , Hamad Hasan^{*5}

¹Botany Department, Faculty of Science, Derna University, Libya

²Chemistry Department, Faculty of Education (Al-Marj), Benghazi University, Libya

³Botany Department, Faculty of Science, Benghazi University, Libya

⁴Pharmacology and Toxicity Department, Faculty of Pharmacy, Omar Al-Muhtar University, Libya

⁵Chemistry Department, Faculty of Science, Omar Al-Mukhtar University, Libya

Corresponding Email. hamad.dr@omu.edu.ly

ABSTRACT

Keywords.

Minerals, Carbohydrate, Antioxidant, Phenols, Plants, Flame, Spectrophotometer.

The main aims of this study are to evaluate the concentrations of some minerals, potassium, sodium, and calcium, besides antioxidant, total phenols, and carbohydrate in leaf and stem samples of some plants, including *Nicotiana glauca* R.C. Graham, *Plantago major* L. Sp. Pl and *Phillyrea latifolia* L. Sp. Pl selected from some eastern regions of Libya. The methods of the Flame photometer were used to estimate the contents of Minerals, and the Spectrophotometric method was used to estimate the concentration of carbohydrates, total phenols, and antioxidants. The results of this study showed that: all the studied samples containing higher values of potassium comparing with calcium and sodium contents, generally the contents of sodium were ranged from 0.708 to 1.45 ppm in leafs and from 1.68 to 9.88 ppm in stems, whereas the concentrations of potassium fluctuated in the ranges of 3.36 -37.56 ppm in leafs and from 36.96 to 75.76 ppm in stems. On the other side, the concentrations of calcium showed lower values compared with potassium and sodium, where the calcium contents ranged between 0.12 – 0.48 ppm in leaves and from 0.291 to 0.708 ppm in stems. The results also recorded that the contents of total phenols ranged between 195.49 – 345.33 ppm; a high content was observed in stems of *Nicotiana glauca* R.C. Graham. On the other side, the amounts of antioxidant were ranged from 9.124 ppm to 10.45 ppm in leaves and from 9.54 ppm to 10.008 ppm in *Phillyrea latifolia* L. Sp. Pl plant stems. Whereas the concentrations of total carbohydrate were fluctuated in the ranges from 0.054 to 0151 ppm in leaves and from 0.134 to 0.191 ppm in stems. Also, the phytochemical screening of the aqueous extracts of the selected leaf and stem samples showed the presence of different of natural product compounds.

Introduction

Since ancient times, medicinal plants, also known as medicinal herbs, have been found and utilized in conventional medical procedures. For a variety of purposes, including defense and protection against insects, fungi, illnesses, parasites, and herbivorous mammals, plants produce hundreds of chemical compounds [1-2]. Because they are more accessible and less expensive than contemporary medications, medicinal plants are frequently employed as folk medicine in non-industrialized civilizations. Traditional medicine is not well regulated in many nations, but the World Health Organization organizes a network to promote its safe and sensible use. The market for botanical herbs has come under fire for being ill-regulated and for having pseudoscientific and placebo goods with no scientific backing for their therapeutic claims [3]. In addition to general dangers like habitat destruction and climate change, medicinal plants also suffer the particular hazard of over-collection to satisfy market demand [4]. There are three main types of benefits that medicinal plants can offer: financial benefits to those who harvest, process, and distribute them for sale; health benefits to those who use them as medicines; and societal benefits like employment opportunities, tax revenue, and a healthier workforce [5]. However, inadequate funding, shoddy drug development procedures, and scant scientific data all hinder the creation of plants or extracts with potential medical use [5]. The measurements of the chemical constituents of medicinal plants were taken in many studies. In Libya, the medicinal plant studies are one of the most important studies, because Libya has a variety of huge herbal plants [6-25]. The studies of the chemical constituents, metals, and minerals in many plants collected from different locations were established [26-29].

60]. This study aims to estimate some of the chemical constituents (Carbohydrates, total phenols, and antioxidants) in some selected plants. Using phytochemicals of leafs and stems. To measure the contents of the (minerals: Na, K, and Ca) in leafs and stems of *Nicotiana glauca* R.C. Graham, *Plantago major* L. Sp. Pl and *Phillyrea latifolia* L. Sp. Pl.

Methods

Sampling

Three different species of plants were selected in this study, including *Nicotiana glauca* R.C. Graham, *Plantago major* L. Sp. Pl and *Phillyrea latifolia* L. Sp. Pl. The leafs and stems of each plant were separated. The samples were collected from different locations, including the valley called Wadi Derna, and Karsah in the West, Al-Dhahr Al-Ahmar in the South, and the Mediterranean coast in the North. The study area is located on the second terrace of El-Jabal El-Akhdar mountain that lies in Wadi Derna in the Derna region, north-east Libya, where the Wadi divides the city into two parts, between longitudes (33°00'-32° 30'N and 22°30'- 22°45'E). The elevation of the Wadi ranges between 40m to 300m above sea level. The climate of the study area is comparable to that of El Jabal El Akhdar with a mean temperature of about 20 °C. The average rainfall ranges between 200- 300 mm.

Sample extraction

10 grams of each dried sample were taken and transferred to a beaker containing 100 ml of distilled water, and the mixture was mixed. Then the extraction was carried out by an evaporator system at 75 °C. After two hours, the mixture was filtered, and the filtrate was used to determine the phytochemical screening.

Phytochemical Analysis

All the phytochemical screening tests were carried out according to the standard methods in the central lab of the Faculty of Science, Omar Al Mukhtar University. The methods are described by previous studies [7-10].

Test for sterols and/or triterpines: Libermann-Burchard's test

One ml of the alcohol and aqueous extracts of each sample and 0.3 ml of acetic anhydride were added, then a few drops of concentrated sulphuric acid were added along the side of the dry test tube. A reddish-violet color is produced at the junction of the two layers, and the chloroform solution acquires a green color in case of presence of sterols and/or triterpines.

Test flavonoids

The extracts (alcohol and aqueous) of the tested species were further extracted with 1% hydrochloric acid. Each extract was subjected to the following test: 10 ml of each extract was rendered alkaline, where a yellow color is produced in the case of the presence of flavonoids.

Test for alkaloids

The alcohol and aqueous extracts of the tested species were further extracted with 20 ml of dilute hydrochloric acid, cooled, and rendered alkaline with dilute ammonium hydroxide solution, and then extracted with chloroform. The chloroform extract is subjected to the following tests:

Dragendorff, the preparation of the reagent:

Solution (a): About (0.85 g) of basic bismuth nitrate was dissolved in a mixture of 10 ml of acetic acid and 40 ml of distilled aqueous. Solution (b): about (8 g) of potassium iodide was dissolved in (20) ml of aqueous solution. Stock solution: Equal volumes of solutions (a) and (b) are mixed. A few drops of chloroform extract were applied to filter paper, allowed to dry, and sprayed with the reagent. Orange color is observed in cases of the presence of alkaloids.

Test for tannins

The extracts (aqueous) of the tested species were further extracted with ethanol 50% then filtered, and the hydro-alcoholic clear solution was subjected to the following test: Ferric chloride test: One ml of the reagent (1% FeCl_3) was added to the alcohol and aqueous solution. Blue color develops in cases of the presence of pyrogallol tannins.

Test for anthraquinones

Bornträger's test

One ml of each alcohol and aqueous extracts of the successive aqueous ammonia or caustic soda is added and shaken. Rose-red color in the aqueous layer develops due to the presence of anthraquinones

glycosides.

Modified-Bornträger's test

One ml of each alcohol and aqueous extracts of the successive extracts of the tested plants is hydrolyzed with alcoholic potassium hydroxide, the acidified and continues as Bornträger's test. Rose-Red develops in the aqueous layer in cases of the presence of anthraquinones.

Test for Saponine

Five ml of tap aqueous is added to (1 ml) of each alcohol and aqueous extracts, then shaken vigorously for five minutes, a froth develops, having (1cm) and persists for (15minutes) indicating the presence of Saponine.

Determination of Phenol Compounds by the Folin-Ciocalteu Method

This experiment was carried out to determine Phenolic compounds, where the amount of total phenolic in the Extracts was determined by (Folin Ciocalteu) reagent according to the method of Slinkard and Singleton (10) using gallic acid as a standard. Samples (two replicates of the sample) were introduced into test cuvets, then 1.0 ml of Folin-Ciocalteu reagent and 0.8 ml of Na_2CO_3 (7.5%) were added. The absorbance of all samples was measured at 765 nm using the Shimadzu UV – Vis spectrophotometer after incubating at 30 °C for 1.5 h. Results were expressed as ppm of fresh weight. of Slinkard and Singleton (10) using gallic acid as a standard. Samples (two replicates of sample) were introduced into test cuvets, then 1.0 ml of Folin-Ciocalteu reagent and 0.8 ml of Na_2CO_3 (7.5%) were added. The absorbance of all samples was measured at 765 nm using the Shimadzu UV – Vis spectrophotometer after incubating at 30 °C for 1.5 h. Results were expressed as ppm of fresh weight.

Determination of antioxidant capacity by the Prussian blue method

One gram of the powdered sample was defatted with petroleum ether. The defatted powder was then extracted sequentially by stirring with 10 ml of methanol twice, then extracted again with 10 ml 1% hydrochloric acid: methanol (v/v). The three combined extracts were evaporated under vacuum, and the residue was dissolved in 10 mL of methanol. Half ml of the solution was diluted with 3 distilled waters, 3 ml (0.008 M) of $\text{K}_3\text{Fe}(\text{CN})_6$ was added, 3 ml 0.1M HCl, and 1 ml 1% FeCl_3 . The blue color is allowed to develop for 5 minutes, and the absorbance is measured at 720 nm at the central lab of the Faculty of Science, Omar Al-Mukhtar University.

Determination of Carbohydrates

To estimate total carbohydrates, a known weight of 0.2 g of the dried sample was ground, then 5 ml of sulphuric acid was added. After completion, the samples were dissolved, the samples were cooled at room temperature, then a small quantity of Barium carbonate (Ba_2CO_3) was added, and the mixture was heated again. After cooling, the samples were filtered. One ml of solution was taken, then one ml of 5% phenol was added. The total carbohydrate was determined by the method carried out in a previous study. Where the absorbance was measured at wavelength of 490 nm.

Determination of Minerals

After digestion of 0.5 gram of each sample by nitric acid (HNO_3). The sodium and potassium, calcium contents were measured by a Flame Photometer (JENWAY Flame Photometer) according to the method described by some studies in the central lab of the Faculty of Science, Omar Al-Mukhtar University.

Results

The results of phytochemical investigation showed the absence of sterols in the *Nicotiana glauca* R.C. Graham. plant and stems of *Plantago major* L. Sp. Pl plant, and presence of high sterols in *Phillyrea latifolia* L. Sp. Pl plant. The flavonoids were observed in leafs of all the studied leaf samples, but they are absent in stems of *Plantago major* L. Sp. Pl plant. Also, the alkaloids are not recorded in the stems of *Plantago major* L. Sp. Pl and *Phillyrea latifolia* L. Sp. Pl. The results also recorded the presence of Tannins in all leafs and stems of samples under investigation, but they are relatively higher contents were detected in stems compared with leafs. The anthraquinones showed higher contents in the leafs of *Plantago major* L. Sp. Pl and *Phillyrea latifolia* L. Sp. Ppm plants comparing with the stems of the same plants, whereas they are completely absent in the leafs and stems of the *Nicotiana glauca* R.C. Graham plant. The saponines were detected in all leaf and stem samples (1&2).

Table 1. The phytochemical screening of sterols, flavonoids, and Alkaloids for the studied plants

Scientific name	Sterols		Flavonoids		Alkaloids	
	Lea fs	Stem s	Leafs	Stems	Leaf s	Stems
Nicotiana glauca R.C. Graham.	-	-	+	+	+	+
Plantago major L. Sp. Pl	+	-	++	-	++	-
Phillyrea latifolia L. Sp. Pl	+++	+++	++	+	+	-

Table 2. The phytochemical screening of of the studied plants

Scientific name	Tannins		Anthraquinones		Saponines	
	Leafs	Stems	Leafs	Stems	Leafs	Stems
Nicotiana glauca R.C. Graham.	+	++	-	-	++	++
Plantago major L. Sp. Pl	+	++	+++	++	++	+++
Phillyrea latifolia L. Sp. Pl	++	++	+++	+	++	++

Total phenols, Anti-Oxidant, and Carbohydrate Contents

The results of this study recorded that the studied plants contained different amounts of total phenols, where the higher values were recorded in stems compared with leafs and ranged from 195.49 ppm in *Plantago major L. Sp. Pl* to 345.33 ppm in stems of *Nicotiana glauca R.C. Graham.* plant, also the results recorded small amounts of anti-oxidant in both stems and leafs, their contents were ranged as follows: from 9.124 ppm to 10.45 ppm in leafs and from 9.54 ppm to 10.008 ppm in *Phillyrea latifolia L. Sp. Pl* plant stems. On the side, the contents of carbohydrate showed lower values in the leafs of *Plantago major L. Sp. Pl* (0.054 ppm), generally no wide variations were observed in carbohydrate contents in the studied plants and fluctuated in the ranges of (0.054 – 0.151 ppm) in leafs and from 0.134 to 0.191 ppm in stem samples (Table 3).

Table 3. The contents (ppm) of Phenols , Anti-oxidant, and Carbohydrate in the studied samples

Scientific name	Total Phenols		Anti-Oxidant		Carbohydrate	
	Leafs	Stems	Leafs	Stems	Leafs	Stems
Nicotiana glauca R.C. Graham.	286.74	345.33	9.41	10.12	0.151	0.134
Plantago major L. Sp. Pl	195.49	305.89	10.45	9.54	0.054	0.191
Phillyrea latifolia L. Sp. Pl	208.59	327.26	9.124	10.008	0.135	0.171

Minerals

This study showed the presence of sodium, potassium, and calcium in leafs and stems of the studied plants. The contents of sodium ranged from 0.708 to 1.45 ppm in leafs and from 1.68 to 9.88 ppm in stems, whereas the concentrations of potassium fluctuated in the ranges of 3.36 -37.56 ppm in leafs and from 36.96 to 75.76 ppm in stems. On the other side, the concentrations of calcium showed lower values compared with potassium and sodium, where the calcium contents ranged between 0.12 – 0.48 ppm in leafs and from 0.291 to 0.708 ppm in stems. The results showed that the potassium recorded higher values in stems compared with leafs and compared the contents of other metals (Na and Ca). On the other side, Calcium contents recorded lower values in all leaf and stem samples. Higher contents of potassium were recorded in stems of *Nicotiana glauca R.C. Graham* plant, followed by leafs of *Plantago major L. Sp. Pl* plant (Table 4).

Table 4. The contents (ppm) of minerals (Na, K, and Ca) in the studied samples

Scientific Name	Leafs			Stems		
	Sodium Na	Potassium K	Calcium Ca	Sodium Na	Potassium K	Calcium Ca
Nicotiana Glauca R.C. Graham.	1.291	12.16	0.48	7.68	75.76	0.541

Plantago Major L. Sp. Pl	1.45	37.56	0.48	9.88	67.16	0.708
Phillyrea Latifolia L. Sp. Pl	0.708	3.36	0.12	1.68	35.96	0.291

Discussion

This study was carried out on the leafs and stems of three different types of plants collected from AlGabal AlAkhder region, Libya. The phytochemical investigation was carried out according to color tests. The results showed the presence of different natural products of compounds, including flavonoids, alkaloids, anthraquinones, phenols, sterols, and tannins, the tests depend on the color changes after adding specific reagents of each compound. The colors show the amounts of the natural products according to their intensity. The variations of colors between the studied samples are usually coordinated with the presence of different compounds of aromatic chemical compounds. The presence of these compounds gives importance to them for medical and pharmaceutical uses, therefore most of these plants were used for many years in traditional medicine. Every plant produces chemical substances that provide it with an evolutionary advantage, such as salicylic acid, a hormone used in plant defenses, or defense against herbivores [61-62]. If experimentally verified, the pharmacological activity and content of these phytochemicals in medicinal plants provide the scientific foundation for their prospective application as medications in contemporary medicine. For example, nine families of alkaloids, including galantamine, which has been approved for use against Alzheimer's disease, are found in daffodils (*Narcissus*). The toxic and bitter-tasting alkaloids are concentrated in plant portions like the stem that are most likely to be consumed by herbivores; they may also offer protection against parasites [63-64]. The Medicinal Plant Transcriptomics Database, which by 2011 had a sequence reference for the transcriptome of over thirty species, is organizing current knowledge about medicinal plants [63]. Examples of plants that contain the major types of plant phytochemicals are given. There are different factors that affect the contents of minerals in plant tissues as the type of soil, the geochemistry of the studied plant locations, and water. Also, the period and duration of sample collection may be affecting the distributions of the mineral contents, many methods as AAS, ICP, XRF, and others, were used to estimate the contents of metals and their composition in different samples [65-75]. Different studies were carried out by many instrumental methods as XRF, atomic absorption, flame photometer [76-95], to estimate the types and contents of minerals and metals in different natural and environmental samples, included soil, sediment, water, plant, vegetable, and others.

Conclusion

The studied samples of *Nicotiana glauca* R.C. Graham, *Plantago major* L. Sp. Pl and *Phillyrea latifolia* L. Sp. Pl. Plants showed presence of different amounts of Minerals (Potassium, sodium, and calcium), beside small variations in total carbohydrate concentrations. Also, the contents of anti-oxidants and total phenols not did showed high variations between leafs and stems of the selected plants in this study.

Acknowledgment

The authors are appreciate the kind collaboration of the staff members of central lab of Chemical Analysis, Chemistry Department, Omar Al-Mukhtar University for their establish the chemical measurements of this study.

References

1. Lichterman BL. Aspirin: the story of a wonder drug. BMJ. 2004;329(7479):1408. doi:10.1136/bmj.329.7479.1408. PMCID: PMC535471.
2. François G, Steenackers T, Assi L, Vismione H and structurally related anthranoid compounds of natural and synthetic origin as promising drugs against the human malaria parasite *Plasmodium falciparum*: structure-activity relationships. Parasitol Res. 2000;85(7):582-588.
3. Ahn K. The worldwide trend of using botanical drugs and strategies for developing global drugs. BMB Rep. 2017;50(3):111-116.
4. Smith-Hall C, Larsen HO, Pouliot M. People, plants and health: a conceptual framework for assessing changes in medicinal plant consumption. J Ethnobiol Ethnomed. 2012;8:43.
5. Berida T, Adekunle Y, Dada-Adegbola H. Plant antibacterials: the challenges and opportunities. Heliyon. 2024;10(10):e31145.
6. Aljamal MA, Hasan HM, Al-Sonosy HA. Antibacterial activity investigation and antibiotic sensitivity for different solvent extracts of *Laurus azorica* and *Avena sterilis*. Int J Curr Microbiol App Sci. 2024;13(11):175-190.
7. Hamade MH, Abdelraziq SA, Gebreel AA. Extraction and determination of beta-carotene content in carrot and tomato samples collected from El-Beida city, Libya. EPH Int J Appml Sci. 2019;1(1):105-110.
8. Hasan HM, Ibrahim H, Gonaid MA, Mojahidul I. Comparative phytochemical and antimicrobial investigation of

some plants growing in Al Jabal Al-Akhdar. *J Nat Prod Plant Resour.* 2011;1(1):15–23.

- 9. Hasan H, Jadallah S, Zuhir A, Ali F, Saber M. Anticancer, anti-inflammatory, antibacterial, antifungal, antioxidant and phytochemical investigation of *Anacyclus clavatus*. *AlQalam J Med Appml Sci.* 2025;415–427.
- 10. Hasan H, Zuhir A, Shuib F, Abdrraba D. Phytochemical investigation and antibacterial activity of *Citrullus colocynthis*. *AlQalam J Med Appml Sci.* 2025;392–400.
- 11. Md Zeyaullah RA, Naseem A, Badrul I, et al. Catechol biodegradation by *Pseudomonas* strain: a critical analysis. *Int J Chem Sci.* 2009;7(3):2211–2221.
- 12. El-Mehdawy MF, Eman KS, Hamad MIH. Amino acid contents of leafs and stems of marjoram and hybrid tea rose. *Der Pharma Chemica.* 2014;6(6):442–447.
- 13. Gonaid MH, Hamad HH, Ibrahim HH, Mojahidul I. Comparative phytochemical and antimicrobial investigation of some plants growing in Al Jabal Al-Akhdar. *J Nat Prod Plant Resour.* 2011;1(1):15–23.
- 14. El-Mehdawy MF, Eman KS, Hamad MIH. Amino acid contents of leafs and stems for three herbal plants at Al-Gabal Al-Akhdar region. *World J Chem.* 2014;9(1):15–19.
- 15. Hamad MH, Noura AAM, Salem AM. Phytochemical screening and antioxidant properties of *Plantago albicans* grown in Libya. *World J Pharm Res.* 2024;13(3):1–17.
- 16. Anees AS, Hamad MIH, Mojahidul I. Antifungal potential of 1,2,4-triazole derivatives against *Tinea corporis* in rats. *Der Pharm Lett.* 2011;3(1):228–236.
- 17. Hasan H, Mohammed M, Haroon A. Antioxidant, phenol and mineral contents of *Eucalyptus gomphocephala* and *Ricinus communis*. *Libyan Med J.* 2015;222–231.
- 18. Hasan H, Akrim Z, Shuib F, Abdrraba D. Efficiency of *Cynara cornigera* fruits as antibacterial and antifungal agents. *Libyan Med J.* 2025;120–128.
- 19. Hanan MA, Hamida E, Hamad MAH. Nitrogen, phosphorus and mineral contents of algae species. *Int J Curr Microbiol Appm Sci.* 2016;5(11):836–841.
- 20. Hasan H, Mariea FFE, Eman KS. Chemical compounds of leafs and stems of selected herbal plants. *EPH Int J Appml Sci.* 2014;6(3).
- 21. El-Mehdawy MF, Eman KS, Hamad MIH. Heavy metal and mineral contents of herbal plants. *Chem Sci Rev Lett.* 2014;3(12):980–986.
- 22. Hamad MAH, Sulayman A, Alehrir A. Amino acid composition of *Ballota pseudodictamnus*. *Libyan Med J.* 2025;266–271.
- 23. Hamad H, Ahmed H, Abdelsatar W. Antioxidant and mineral evaluation of *Ziziphus lotus*. *Libyan Med J.* 2025;137–143.
- 24. Hesien RA, Amira AKA, Ahlaam MA, Hamad MAH. Antioxidant capacity and antibacterial activity of gaper plant extracts. *Sch J Appml Med Sci.* 2024;12(4):451–457. doi:10.36347/sjams.2024.v12i04.021
- 25. Hamad MAH, Noura AAM, Salem AM. Nutritional contents of muskmelon and watermelon cultivars. *Der Pharma Chemica.* 2024;16(3):330–334.
- 26. Ben Arous NAA, Naser ME, Hamad MAH. Phytochemical screening and antimicrobial activity of *Cistus* species. *Int J Curr Microbiol Appm Sci.* 2024;13(11):262–280.
- 27. Anas FAE, Hamad MAH, Salim AM, Azza MH. Phytochemical and antioxidant properties of *Helichrysum stoechas*. *Afr J Biol Sci.* 2024;3(6):2349–2358.
- 28. Naseer RE, Najat MAB, Salma AA, Hamad MAH. Metal and mineral contents of *Cistus* species. *Int J Adv Multidiscip Res Stud.* 2024;4(5):191–194.
- 29. Hamad MAH, Salem AM. Nutritional composition of melon fruits. *Sch J Appml Med Sci.* 2024;12(1):1–7.
- 30. Haroon A, Hamad MAH, Abdelsatar W, Baset ESM. Morphological and chemical properties of *Eucalyptus gomphocephala*. *J Res Environ Earth Sci.* 2024;9(12):10–18.
- 31. Enam FM, Wesam FAM, Hamad MAH. Mineral contents in vegetable and soil samples. *Int J Adv Multidiscip Res Stud.* 2023;5(3):304–309.
- 32. Rinya FMA, Hamad MAH, Ahlam KA, Hammida MEH. Phytochemical screening of herbal plants. *Afr J Basic Appml Sci.* 2017;9(3):161–164.
- 33. Ali RFA, Hamad MAH, Ahlam KA, Hammida MEH. Phytochemical screening of medicinal plants. *Int J Pharm Life Sci.* 2017;8(4):5500–5503.
- 34. Hamad MAH, Hanan AAK, Fatima A. Infrared characterization of Schiff base compounds. *J Res Pharm Sci.* 2021;7(3):8–12.
- 35. Hamad MIH, Aaza IY, Safaa SH, Mabrouk MS. Biological study of transition metal complexes with adenine ligand. *Proceedings.* 2019;41(1):77.
- 36. Ahmed O, Ahmed NH, Hamad MAH, Fatin ME. Chemical and biological study of metal complexes with guanine ligand. *Int J New Chem.* 2023;10(3):172–183.
- 37. Hamad MAH, Enas UE, Hanan AK, Hana FS, Somia MAE. Synthesis and antibacterial applications of barbital compounds. *Afr J Biol Sci.* 2024;6(4).
- 38. Ashraf AA, Hamad MAH, Hanan AAK, et al. Molecular docking studies of Schiff base compounds. *Afr J Afr Sci.* 2024;6(3):3324–3334.
- 39. Mohamed GB, Zainab SH, Hamad MAH, et al. IR analysis and biological applications of Schiff base compounds. *Eur Chem Bull.* 2024;12(5):887–906.
- 40. Salama MM, Moussa SF, Hamad MAH. Metal complexes with tyrosine ligand. *Int J New Chem.* 2023;10(5):323–339.
- 41. Hamad H. Biological study of transition metal complexes with adenine ligand. *Proc Int Electron Conf Synth Org Chem.* 2019. doi:10.3390/ecsoc-23-06601

42. Siddiqui AA, Mojahid I, Hasan HH. Synthesis and antitubercular activity of oxadiazoles. *Hamdard Medicus*. 2011;54(1):82-89.

43. Eltawaty SA, Abdalkader GA, Hasan HM, Houssein MA. Antibacterial activity of *Salvia fruticosa*. *Int J Multidiscip Sci Adv Technol*. 2021;1(1):715-721.

44. El-Barasi YM, Saaed MW. Threats to plant diversity in northeastern Libya. *J Environ Sci Eng*. 2013;2:41-58.

45. Naili MB. Antibacterial and antioxidant activities of *Artemisia campestris* and *Ziziphus lotus*. *Arab J Chem*. 2010;3(2):79-84.

46. Mahomoodally MF, Gurib-Fakim A, Subratty AH. Antimicrobial activities of endemic medicinal plants. *Pharm Biol*. 2013;51(3):237-242.

47. Vandebroek I, Calewaert S, De Jonckheere S, et al. Use of medicinal plants by indigenous communities. *Bull World Health Organ*. 2004;82:243-250.

48. Elsalhin H, Abobaker HA, Hasan H, El-Dayek GA. Antioxidant capacity of algae species. *Sch Acad J Biosci*. 2016;4(10):782-786.

49. Alaila AK, Elsalhin HE, Ali RF, Hasan HM. Phytochemical screening of herbal plants. *Int J Pharm Life Sci*. 2017;8(4).

50. Hasan H, Mariea FFE, Eman KS. Chemical compounds of herbal plants. *EPH Int J Appml Sci*. 2014;6(3).

51. Abdelrazeg A, Khalifa A, Mohammed H, et al. Removal of heavy metals using melon peels. *AlQalam J Med Appml Sci*. 2025;787-796.

52. Abdul Razaq A, Hamad H. Estimation of water well salts in Al-Bayda city. *AlQalam J Med Appml Sci*. 2025;744-753.

53. Abdulsayid FA, Hamad MAH, Huda AE. IR spectroscopic investigation of sediments. *IOSR J Appml Chem*. 2021;14(4):20-30.

54. Alambarki M, Hasan HMA. Heavy metal contents in air samples. *AlQalam J Med Appml Sci*. 2025;695-707.

55. Al-Nayyan N, Mohammed B, Hamad H. Heavy metals in soil and plants near roads. *AlQalam J Med Appml Sci*. 2025;816-826.

56. Hasan HMI. Studies on physicochemical parameters and water treatment. PhD Thesis. Alexandria University; 2006.

57. Hamad MAH, Hager AA, Mohammed EY. Chemical studies of water samples in Libya. *Asian J Appml Chem Res*. 2022;12(3):33-46.

58. Hamad MH. Physicochemical parameters and water treatment studies. *Alexandria Univ J*. 2006.

59. Hamad M, Mohammed AA, Hamad MAH. Adsorption of heavy metals using sea grasses. *Int J Adv Multidiscip Res Stud*. 2024;4(6):677-685.

60. Hamad MAH, Hamad NI, Mohammed MYA, et al. Marine sediments as environmental indicators. *Sch J Eng Technol*. 2024;2(14):118-132.

61. Hamad MIH. Heavy metals distribution in coastal waters. *Egypt J Aquat Res*. 2008;34(4):35-52.

62. Lamottke K, Ripoll C, Walczak R. The roots of innovation. *Eur Biopharm Rev*. 2011;15:52-56.

63. Bastida J, Lavilla R, Viladomat F. Chemical and biological aspects of *Narcissus* alkaloids. In: Cordell GA, editor. *The Alkaloids*. Vol 63. Elsevier; 2006. p. 87-179.

64. Birks JS. Cholinesterase inhibitors for Alzheimer's disease. *Cochrane Database Syst Rev*. 2016;(1):CD005593.

65. Soejarto DD. Transcriptome characterization of medicinal plants. University of Illinois at Chicago; 2011.

66. Hamad MIH, Mojahid UI. Heavy metals in Al-Gabal Al-Akhdar coast sediment. *Arch Appml Sci Res*. 2010;2(6):59-67.

67. Hamad MAH, Amira AKA. Heavy metals in shoe polish samples. *EPH Int J Appml Sci*. 2016;2(2):24-27.

68. Hamad MAH, Hussien SSM, Basit EEM. Heavy metals in green algae. *Int J Adv Multidiscip Res Stud*. 2024;4(5):188-190.

69. Hamad MIH, Ahmed MA. Major cations in coastal waters of Derna. *Egypt J Aquat Res*. 2009;35(1):13-20.

70. Hamad MIH, Mojahid UI. Heavy metals of Al-Gabal Al-Akhdar coast sediment. *Arch Appml Sci Res*. 2010;2(6):59-67.

71. Hamad MIH, Masoud MS. Thermal and X-ray analysis of sediment samples. *Int J Chem Sci*. 2014;12(1):11-22.

72. Hamad R, Ikraiam FA, Hasan H. Heavy metals in fish bones. *J Rad Nucl Appml*. 2024;9(1):47-51.

73. Hasan HAH. Lead and cadmium in archaeological samples. *Univ J Chem Appml*. 2021;12(21):902-907.

74. Alfutisi H, Hasan H. Removal of thymol blue using pomegranate peel. *Int J Appml Sci*. 2019;1(1):111-119.

75. Hasan JA, Hasan HMA. Heavy metals in yogurt samples. *World J Pharm Pharm Sci*. 2024;13(12):100-112.

76. Mamdouh SM, Wagdi ME, Ahmed MA, et al. Rice husk and activated carbon for wastewater treatment. *Arab J Chem*. 2016;9:1590-1596.

77. Mamdouh SM, Wagdi ME, Ahmed MA. Heavy metals in sediments. *Bull Fac Sci*. 2012;47(1-2):12-28.

78. Mohamed AE, Afnan SA, Hamad MA, et al. Natural wastes as adsorbents. *J Water Process Eng*. 2023;55.

79. Mohamed HB, Mohammed AZ, Ahmed MD, et al. Soil heavy metal pollution in Libya. *Sci J Damietta Fac Sci*. 2024;14(1):16-27.

80. Nabil B, Hamad H, Ahmed E. Cu, Co and Pb in frozen fish. *Chem Methodol*. 2018;2:56-63.

81. Wesam FAM, Hamad MAH. Heavy metals in frozen chicken bones. *Int J Adv Multidiscip Res Stud*. 2023;3(3):761-764.

82. Wesam FAM, Hamad MAH. Minerals and heavy metals in algae. *GSC Biol Pharm Sci*. 2023;23(3):147-152.

83. Citrine H, Hamad H, Hajar AF. Metal oxides in marine sediment. *AlQalam J Med Appml Sci*. 2015;1316-1321.

84. Mardhiyah F, Hamad H. Soil contamination by heavy metals. *AlQalam J Med Appml Sci*. 2025;1081-1091.

85. Hamad MIH, Aaza IY, Safaa SH, Mabrouk MS. Biological study of transition metal complexes. *Proceedings*. 2019;41(1):77.
86. Ahmed O, Ahmed NH, Hamad MAH, Fatin ME. Metal complexes with guanine ligand. *Int J New Chem*. 2023;10(3):172–183.
87. Hamad MAH, Enas UE, Hanan AK, et al. Synthesis and antibacterial appmlications of barbital compounds. *Afr J Biol Sci*. 2024;6(4).
88. Salama MM, Moussa SF, Hamad MAH. Antibacterial studies of metal complexes. *Int J New Chem*. 2023;10(5):323–339.
89. Hamad H. Biological study of transition metal complexes. *MDPI Proc*. 2019. doi:10.3390/ecsoc-23-06601
90. Yasmeen NA, Anas SM, Taffaha AA, et al. Determination of vitamins by HPLC. *TWIST*. 2024;19(2):312–318.
91. Aisha A, Khanfar M, Akrim Z, et al. Fatty acids and antimicrobial studies of Juniperus phoenicea. *Attahadi Med J*. 2025;437–448.
92. Hamad MAH, Khalied HA, Elsheihi SMA, et al. Design and synthesis of Schiff base derivatives. *Discover Chem*. 2025;2(1):336.
93. Al-Awjali K, Khanfar M, El-Mokasabi F, et al. Nutritional analysis of medicinal plants. *AlQalam J Med Appml Sci*. 2025;2796–2803.
94. Ehdoud A, Abdulsalam S, Bunuwarah A, et al. Spectrophotometric analysis of plant extracts. *Libyan Med J*. 2025;432–441.
95. Hamad H, Yousuf A, Khaliefa M, Mustafa D. Residual aluminum and zinc in food wrappmed by foil. *Libyan Med J*. 2025;397–403.